³Ô¹ÏÍøÕ¾

Probes shed new light on Alzheimer’s cause

Rice University researchers have found a way to track the formation of soluble peptide aggregates implicated in the onset of Alzheimer’s disease.

The Rice lab of reported its development of a ruthenium-based fluorescent complex that binds to soluble, oligomeric amyloid beta peptides. As the peptides come together to form the large biomolecules called , the fluorescent additive binds and labels them.

Rice graduate student Bo Jiang shows a fluorescing vial of soluble amyloid beta peptide aggregates implicated in the onset of Alzheimer’s disease. The peptides are tagged and tracked with a ruthenium complex developed at Rice that can monitor them in lab experiments as they grow over time. Photo by Jeff Fitlow

That will allow researchers to easily track the progress and movements of aggregates as they grow over time. Details of the work appear in the .

Amyloid plaques have long been suspected as the root cause of Alzheimer’s, but recent studies suggest that oligomers – floating molecules with repeating peptide units – do far more damage.

“There’s a view in the field that soluble oligomers are the main cause of neuronal degeneration, because these oligomers are toxic to neurons,” said Martí, an associate professor of chemistry, of bioengineering and of materials science and nanoengineering. “These oligomers are definitely associated with Alzheimer’s pathology, so there’s been a need for tools to help us study them.”

Rice researchers have developed a ruthenium-based complex able to track the formation of soluble amyloid beta peptide aggregates implicated in the onset of Alzheimer’s disease. Photo by Jeff Fitlow

He said oligomers are “virtually invisible” to commonly used to tag amyloid fibrils in lab studies. The ruthenium complexes solve that problem.

The complexes take advantage of , in which the fluorescent response is polarized, glowing brighter in some directions than others. “It’s a very old technique related to the rotation of molecules,” Martí said. “When the molecule is in solution, it moves and is constantly rotating. When it’s very small, it rotates very fast and the anisotropy is nearly zero.

“But when the same probe binds to a big macromolecule, it rotates more slowly,” he said. “That’s how we know we have oligomers, and then we can track their growth and propagation.”

Lab tests showed oligomers forming in solution at different temperatures over hours. Martí noted cold solutions slow the process, but at body temperatures, oligomers form “very fast and in large amounts. The speed at which they form at physiological temperatures is remarkable.”

The Rice lab also used its probes to see how cells were affected in real time when injected with amyloid beta peptides. They revealed only 60% of cells injected with oligomers remained viable, while those treated with amyloid fibrils and monomers had higher viability, about 80%, suggesting the oligomers are indeed toxic, Martí said.

For now, he said, the ruthenium probes are meant for use only in the laboratory. “It will be difficult to use these in the brain because there’s too much scattering of light,” Martí said. “They are made to take advantage of polarized light, and scattering would dampen that.”

A ruthenium-based tag developed at Rice takes advantage of fluorescent anisotropy to measure the rotation of amyloid beta oligomers as they grow in solution. Small aggregates rotate fast, while large oligomers rotate slowly, a characteristic that lets researchers watch as they grow. Amyloid beta oligomers are toxic to neurons and implicated as a possible cause of Alzheimer’s disease. Courtesy of the Angel Martí Group

“But as a lab tool, they will allow researchers around the world to test the effects of other molecules on the rate of oligomer formation, and that’s a big deal,” he said. “They can quickly see if a drug delays or halts the formation of oligomers.”

Rice graduate student Bo Jiang is lead author of the paper. Co-authors are Rice graduate student Ashleigh Smith McWilliams; undergraduate Andrea Augustine; Rice alumni Nathan Cook, now an instrumentation specialist in the Department of Chemistry at Williams College in Williamstown, Mass., Amir Aliyan, now a researcher at Khatam University in Tehran, Iran, and Rodrigo Maldonado, now a graduate student at Northwestern University; Ghibom Bhak and Javier Montenegro of the Universidade de Santiago de Compostela, Spain; Erick Flores and Fernando Godoy of the Universidad de Santiago de Chile; and Nicolas Mendez, Mohammad Shahnawaz and Ines Moreno-Gonzalez of The University of Texas Health Science Center at Houston.

The Welch Foundation supported the research.

/Public Release. View in full .