Three scientists and one team from The University of Manchester have won prizes from the Royal Society of Chemistry in recognition of their brilliance in research and innovation.
Dr Selena Lockyer, Professor Matthew Gibson, Professor Sarah Lovelock and the Functional Framework Materials: Design and Characterisation Team, led by and Professor Sihai Yang have all been recognised with a prize this year.
Dr Selena Lockyer has been named winner of the Royal Society of Chemistry’s Dalton Emerging Researcher Prize for her synthetic and spectroscopic studies of molecular magnets, particularly supramolecular assemblies that could be used in quantum information processing. Dr Lockyer will also receive £3000 and a medal.
Dr Lockyer investigates the properties of individual electrons at the molecular level and how they can interact with one another and relay or store information. This is done at the ³Ô¹ÏÍøÕ¾ Service for Electron Paramagnetic Resonance Spectroscopy at The University of Manchester.
Apart from making devices smaller, quantum devices possess other advantages. One such phenomenon is known as a superposition state that can be used in quantum bits (qubits), which a standard classical bit – the ones in our laptops – is unable to achieve.
A quantum computer will help us address society’s challenges by modelling and developing solutions for climate change, sustainability and energy sources, medical conditions, and how to make a more efficient and better quantum computer.
After receiving the prize, Dr Lockyer said: “It’s such an honour and privilege to receive this award. Unexpected, as there are so many up-and-coming scientists working on numerous research areas, which makes this all the more special. When you look back at the list of previous winners, it is overwhelming to now be part of this.”
has been named winner of the Royal Society of Chemistry’s Corday-Morgan Prize.
Professor Gibson won the prize for transformative contributions in polymer and biomaterials science, particularly for the development of materials to stabilise biologics. Professor Gibson will also receive £5000 and a medal.
Storing and transporting biological materials is crucial to modern life, from frozen food to the safe delivery of blood transfusions, stem cells, or even organs. Professor Gibson and his team have learned from some of nature’s toughest organisms, which can survive sub-zero temperatures, to develop new materials which can protect biopharmaceuticals against cold stress.
After receiving the prize, Professor Gibson said: “I’m honoured to be recognised for the work we have done in my team to develop new tools to help us stabilize biologics against cold stress and to join a such a distinguished list of former awardees.”
has been named winner of the Royal Society of Chemistry’s Harrison-Meldola Prize.
Dr Lovelock won the prize for the development of innovative biocatalytic approaches to produce therapeutic oligonucleotides. She also receives £5000 and a medal.
Therapeutic oligonucleotides are a new class of RNA-based molecules that have the potential to treat a wide range of diseases. However, the rapidly growing number of therapies approved and in advanced clinical trials is placing unprecedented demands on our capacity to manufacture oligonucleotides at scale.
Biocatalysis is an exciting technology that is widely used across the chemical industry: this is where enzymes are used to convert starting materials into high-value products. Dr Lovelock’s group is developing biocatalytic approaches to produce therapeutic oligonucleotides in a more sustainable and scalable way.
One strategy they have developed produces complex oligonucleotide sequences in a single operation using polymerases and endonucleases (nature’s enzymes). These enzymes work together to amplify complementary sequences embedded within a catalytic template. The group is working in partnership with industry to translate their approaches into manufacturing processes.
After receiving the prize, Dr Lovelock said: “I am delighted to have been awarded the 2024 Harrison-Meldola Memorial Prize. I am very grateful to my talented research group. It is their hard work, great ideas, and dedication that has made this award possible.”
The Functional Framework Materials: Design and Characterisation Team have been named winners of the Royal Society of Chemistry’s Horizon Prize, which celebrates discoveries and innovations that push the boundaries of science.
The team is a collaboration between The University of Manchester, Oak Ridge ³Ô¹ÏÍøÕ¾ Laboratory, Diamond Light Source, ISIS Neutron and Muon Source STFC, Berkeley Advanced Light Source, Peking University, Xiamen University and the University of Chicago.
They were awarded the prize for seminal contributions to in situ and operando characterisation of porous materials and catalysts for the binding, capture and separation of fuels, hydrocarbons, and pollutants. The team receive a trophy and a video showcasing their work, and each team member receives a certificate.
Metal-organic frameworks (MOFs) are porous materials that can capture and store important fuels like hydrogen, methane, and ammonia, hydrocarbons (ethane, propane, and xylenes), and harmful pollutants (carbon dioxide, sulfur dioxide, and nitrogen dioxide).
Using state-of-the-art X-ray and neutron techniques, the team have been able to see the MOFs at the atomic level and how the captured molecules interact with the MOF’s internal structure during reactions. They also used computational modelling to give a deep understanding of how these advanced functional materials operate at a molecular level. This extensive collaboration has been crucial for producing improved materials that can be integrated into our daily lives and makes a vital contribution towards solving the pressing climate and energy challenges that the world faces.
Professor Martin Schröder, Vice President and Dean, Faculty of Science and Engineering, who leads the group at The University of Manchester, said: “I am delighted and honoured that the Royal Society of Chemistry has recognised our interdisciplinary team with the Dalton Horizon Prize. This has been a truly international collaborative effort spanning multiple individuals and groups each bringing their own unique expertise to address challenge research areas.”
The Royal Society of Chemistry’s prizes have recognised excellence in the chemical sciences for more than 150 years. This year’s winners join a prestigious list of past winners in the RSC’s prize portfolio, 60 of whom have gone on to win Nobel Prizes for their work, including 2022 Nobel laureate Carolyn Bertozzi and 2019 Nobel laureate John B Goodenough.
The Research and Innovation Prizes celebrate brilliant individuals across industry and academia. They include prizes for those at different career stages in general chemistry and for those working in specific fields, as well as interdisciplinary prizes and prizes for those in specific roles. The Horizon Prizes highlight exciting, contemporary chemical science at the cutting edge of research and innovation. These prizes are for groups, teams and collaborations of any form or size who are opening up new directions and possibilities in their field, through groundbreaking scientific developments. Other prize categories include those for Education (announced in November), the Inclusion & Diversity Prize, and Volunteer Recognition Prizes.
Dr Helen Pain, Chief Executive of the Royal Society of Chemistry, said: “The chemical sciences cover a rich and diverse collection of disciplines, from fundamental understanding of materials and the living world to applications in medicine, sustainability, technology and more. By working together across borders and disciplines, chemists are finding solutions to some of the world’s most pressing challenges.
“Our prize winners come from a vast array of backgrounds, all contributing in different ways to our knowledge-base and bringing fresh ideas and innovations. We recognise chemical scientists from every career stage and every role type, including those who contribute to the RSC’s work as volunteers. We celebrate winners from both industry and academia, as well as individuals, teams, and the science itself.
“Their passion, dedication and brilliance are an inspiration. I extend my warmest congratulations to them all.”